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Abstract

We give the analytical expression of the magnetic field generated

by an idealized bent lithium lens. The self-consistent current density

vector is of the form J = Jo

2
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Ro

R
+

(

Ro

R

)2
}

eφ. All quantities have the

right limit when Ro → ∞.

1 INTRODUCTION

A lithium lens with an specified curvature has being proposed to be used in
cooling rings to achieve transverse and longitudinal emittances appropriate
for a Muon Collider [1], [2] and [3].

2 STRAIGHT LENS

An idealized model of a straight lithium lens calls for a uniform current
density J = (0, Jo, 0) in the body of the device.

Maxwell’s equation ∇×B = µoJ implies:

Br = Bz = 0 and Bθ =
µo
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where I is the total current and a is the radius of the lens.
We introduce the vector potential ∇× A = B which gives

Br =
1

r

∂Az

∂φ
Bθ = −

∂Az

∂r
.
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By observation we can write that the longitudinal component of the vector
potential

Az = −
µo

4
Jor

2 . (2)

Note that trivially, ∇ ·A = 0 and ∇ · B = 0 as it should.

3 BENT LENS

For the problem at hand it is helpful to introduce a variation of a toroidal co-

ordinate system as shown in Fig. 1. The relation between coordinate systems
is:
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Figure 1: Definition of the toroidal coordinates (r, θ, φ).

R = Ro + r cos θ (3)

r = R cos φ ex + R sin φ ey + r sin θ ez (4)

where Ro is the radius of curvature of the curved lens. We will need the scale
factors [4] h2

1 ≡ 1, h2
2 ≡ r2 and h2

3 = R2 and the expression for the curl of a
vector F

∇× F = 1
rR

{

er

[

∂(RFφ)

∂θ
−

∂(rFθ)
∂φ

]

(5)

+r eθ

[

∂Fr

∂φ
−

∂(RFφ)

∂r

]

(6)

+R eφ

[

∂(rFθ)
∂r

−
∂Fr

∂θ

]}

(7)

(8)

2



and for the divergence of a vector F

∇ · F =
1
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{

∂(rRFr)

∂r
+

∂(RFθ)

∂θ
+

∂(rFφ)

∂φ

}

(9)

Now we guess an expression for the vector potential Aφ(r, θ) such that in the
limit Ro → ∞ we recover the expression of Az (note the change in labels of

the cartesian axis).
It is natural to take Aφ(r, θ) = −µo

Jo
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, then
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(10)

Trivially, ∇ · A = 0 and ∇ ·B = 0.
Now we have to find the current density vector J in this toroidal geometry;

using Maxwell’s equation ∇ × A = µoJ and some algebra we find Jφ =
Jo

2
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}

. Obviously, in the limit Ro → ∞ we obtain the correct

uniform current Jo.

Distintive features of the solution Bθ are:

• the field is zero at the center of the lithium lens (r = 0)

• Bz = −Bθ cos θ is constant on planes of constant x − Ro = r cos θ and
the magnitude increases as we move left toward the geometric center
of the toroid, reaching maximum at xmax = Ro − a with magnitude
Bz = −µo

Jo

2
Roa

Ro−a
(see Fig. 2)

We show in Fig. 3 the magnetic field for two different radius of curvature Ro

of a lithium lens with radius a = 0.1 m.
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Figure 2: (Color)Plot of Bz vs x = r cos θ

Figure 3: (Color)Polar plot of Bθ for Ro = 1.20 m (left) and Ro = 0.20 m

(rigth); in both cases the radius of the lithium lens is a = 0.10 m.
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